

ROAD TO CLOUD PEERING WITH SDN CONTROLLER

Shaowen Ma, Director, APAC Product, Juniper, mashao@juniper.net Oct 10th, 2016

AGENDA

\$1B+ UNICORN COMPANY, INNOVATION NEVER SO FAST

Source: http://www.visualcapitalist.com/the-increasingly-crowded-unicorn-club/

CLOUD – TELCO OR PRIVATE/PUBLIC INFRASTRUCTURE AS CODE FOR DEVOPS AND AUTOMATION FOR INFRA OPS

Developer Operations (DevOps)

- Deploy Network & Network Services when you deploy Apps
- Tightly Integrated Orchestration of Compute, Storage, and the Network
- All Networking Services VLANs, Routing, Policy, Load Balancing, IPAM/DHCP, DNS – is provided in software and virtualized
- No App specific knowledge in the underlying hardware

Infrastructure Operations

- Cookie cutter approach to deploying Physical Hardware
- Automated Provisioning of Hardware -Gateway Routers, Spine Switches, TORs, Servers, JBODs, DAS ..
- Secure the Infrastructure, not the Apps
- Integrated Monitoring and Alerting of all hardware components

INTER-DOMAIN CLOUD TRAFFIC ENGINEER

Easy to optimize End-To-End Traffic for SP Owned Network. How to optimize VIP Customer for Internet/Cloud connection?

CURRENTLY SOLUTION AND LIMITATIONS

Current Solution can't meet Cloud Traffic Engineer Requirement

CLOUD TRAFFIC ENGINEER SOLUTION COMPONENTS

- draft-ietf-idr-bgpls-segment-routing-epe-02 ٠
- draft-ietf-spring-segment-routing-central-epe-00

draft-ietf-spring-segment-routing-0x

With Controller, Segment Routing and LSR Switch can build Cheaper and Optimized Cloud traffic Engineer

٠

SDN 2.0 ERA

Segment Routing, RSVP-TE Enable SDN 2.0 Edge Intelligence, Stateless CORE

BGP EPE DESIGN PHILOSOPHY

How to Select Which Peer to send

- Controller/RR may morning the BGP Peer Link
- Controller/RR find a tunnel from Ingress to ASBR
- Controller/RR based on certain rules to select ASBR

How ASBR identify a Peer

- Per Peer /32 address per label
- Install the MPLS Label POP for every Peer
- When ASBR received different label and send traffic to specific Peer

How Ingress mapping traffic to ASBR/Peer

Push

Push

- Ingress push tunnel label to ASBR
- Ingress push BGP-LU label

BGP EGRESS PEER ENGINEERING/BGP-LU DETAIL

BGP EGRESS PEER ENGINEERING/BGP-LU DETAIL

BGP-LU WITH SEGMENT ROUTING

BGP-LU Session between Controller/Router

- BGP LU carrier the label stack for SR/LSP
- BGP-LU carrier the Label stack for LSP + VPN Service

BGP-LS get the network information

- TEDB information with label send back to Controller
- draft-gredler-idr-bgp-ls-segment-routing-ext-xx.txt

BGP is the only protocol for Service and Tunnel

- QPPB/BGP FlowSpec
- With additional Openflow/PBR

draft-rosen-idr-rfc3107bis-00.txt

Copyright © 2016 Juniper Networks, Inc. www.juniper.net

static {

peer-as 65000; local-as 65000; family { ipv4 nlri-mpls; }

route 10.255.255.8/32 {

next-hop 10.0.0.2;

label [101 103 104 800008]; }}

BGP LU AND FRR BACKUP

BGP LU no IP lookup on ASBR

Normally MPLS label POP and forwarding

- Per Peer /32 address per label
- Use FRR in same ASBR
 - IP-forwarding option, remove the LU label and then IP lookup
 - Peer peer-ip, send to backup peer directly
- For remote ASBR, leverage remote-nexthop for FRR
 - Setup tunnel to remote ASBR
 - Get rid of BGP-LU label and replace by the remote neighbor's BGP-LU label

For ASBR failure, will need Egress Protection

- Remote Anycast ASBR need to understand the Failure ASBR BGP-LU label
- Or Remote Anycast ASBR will just do IP-lookup, ignore the BGP-LU label
- For future implementation

BGP-LU EPE & MPLS KEY BENEFITS

EXTEND HOLLOW CORE/LSR TO PEERING, CHEAPER PEERING SOLUTION

BGP-LU VS BGP-EPE FOR PEER TRAFFIC ENGINEER

BGP-LU for Seamless MPLS

Egress Peering Engineer, 2 different Methods

- [Juniper] draft-gredler-idr-bgplu-epe-04
 - No New Address Family, Any tunnel can apply
 - build in FRR method for Peer failure
 - Existing Solution with enhance, Fast Time to Market
- [other] draft-ietf-idr-bgpls-segment-routing-epe-02
 - New Address Family, request SR tunnels
- Both Assign a Label for Peer, no need upgrade Peer router, peer can be IP or MPLS forwarding

EGRESS PEER ENGINEERING (EPE) USE CASE IN DC

CONTROLLER AND EPE USE CASE

USE CASE, CDN PEERING

ASBR Setup BGP session and pass BGP-LU and BGP-LS information to Controller.

Controller Calculate the Path

- Controller select which Peer A/B/C send traffic to with LU label.
- Controller and ASBR take part in the Segment routing domain, and know to send traffic to ASBR adding a IGP/SR label or tunnels
- Controller will send MPLS label Stack to Ingress Router or Host

Controller keep monitor path and Egress link

 When Congestion happens, will automatically redirect traffic to another ASBR/Peer by changing the label stack

Separate Control/Forwarding

- Controller Full Internet Table, RIB, Control Plane only.
- ASBR only Keep LSR label switching, Forwarding Plane, No IP lookup

Policy start from Ingress

Linux Host/Hypervisor/switch/router

Tencent Peering Situation

- Peering with many Tier 1 and 2 SP, around 20+ peer AS.
- Peering from 4-5 cities across China, Beijing/Shanghai/Shenzhen/Guangzhou etc.
- Peering with Hongkong for international directly

Key Pain Points

- No Global BGP traffic Engineering optimization
- Static RSVP tunnel, A lot of Policies on ASBR.
- Peering Traffic Grow so fast, how to save CAPEX on ASBR?

APPLICATIONS DETAILS SAME TECHNOLOGY FOR DC & WAN

Application is the Network Brian:

- BGP-LU EPE information from ASBR for peer label and internet prefix table.
- BGP-LS/Netflow information for all link TE TLV, and BMP for Prefix
- PCEP, Calculate Segment routing tunnel and apply 2+ labels in network
- Traffic Steering/mapping to tunnels, and monitor tunnels
- Easier to calculate Latency based routing for network wide optimized.

Controller for Segment routing Traffic Tunnel setup/monitor Separate Control/Forwarding

- Controller Full Internet Table, RIB, Control Plane only.
- ASBR only Keep LSR label switching, Forwarding Plane, No IP lookup

SUMMARY

1	Extend Traffic Engineer to Cloud, Global Network Optimized
2	SDN Controller Solution, Automatic Congestion/Latency Optimized
3	Simplified ASBR Design, no IP, no Policy, LSR only
4	Controller/Application support full intelligence RIB/Traffic Telemtry
5	Standard Based solution, work with existing peer ASBR

THANK YOU